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The results of measurements within the bracket of 
Reynolds number from lo4 to 195000 can be expressed 
by equation 

Nu = 0.33 (Gr + Re’)“~‘“. 14) 

The effect of free convection was allowed for by Grashof 
number (as in [4]), the influence of which on the value of 
heat-transfer coefficient at the local Reynolds numbers 
greater than 3 x lo4 did not exceed 6 per cent. The small 
deviation of the measurement results from the theoretical 
values for low Reynolds numbers, may have resulted from 
a some difference between a theoretical and an experimental 
flow models due to a final diameter of the test disk. The 
table below contains a comparison of the results of some 
experiments with an analitycal prediction. The results of 
measurements by Cobb and Saunders [5], as well as those 
by Richardson and Saunders [4], obtained on the same stand 
are probably too high due to disturbing influence of the shaft 
and stand elements. 

Table 1. Comparison of experimental results with a 
theoretical solution (for Pr = 0.71) 

Author 
NU 

-__ 
(Gr+ Re’)’ 15f(Pr = 0.71) 

Experiments of: 
Richardson and Saunders [4] 
Cobb and Saunders [5] 
Kreith, Taylor and Chong j-61 

0.40 
0.36 
0.34 

McComas~and Hartnett [3] - 0.33 
Authors of this uauer 0.33 
Analytical solution of: 

Hartnett [7] 0.33 

Within the range of Reynolds number from 195000 to 
250000 there is a fast increase of local heat-transfer 
coefficients. The limits of this region overlap quite well 
with the points of stability loss of the laminar boundary 
layer and the beginning of turbulent boundary layer on the 
rotating disk, as determined by Gregory and Walker [S]. 

The local heat transfer in the transition region can be 
expressed by following equation* 

NU = 10 x IO-‘O Re4. (5) 

The measurement results worked out within the range of 
Reynolds numbers from 250000 to 670000 at the constant 
radius R = 185 mm can be expressed by the equation* 

Nu = 0.0188 Re”*. (6) 

An average Nusselt number n = Nu/1.3 = 0.0145 Re”‘8 is 
3.7 per cent lower than those obtained by Cobb and 
Saunders [5]. 
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*The effect of the finite width of the h-calorimeter was 
duly allowed for, i.e. lowering of the measured values by 
1.6 per cent in the transition region, and by 0.7 per cent in 
the turbulent region. 

EXACT SOLUTIONS FOR MULTI-DIMENSIONAL RADIATIVE 
TRANSFER IN NON-ISOTHERMAL SPHERICAL MEDIA 

PING CHENG* and SHYAM S. DUA? 

Department of Mechanical Engineering, University of Hawaii, Honolulu, Hawaii 

(Received 22 October 1973 and in revised form 6 May 1974) 

NOMENCLATURE 

BU, Bouguer number or optical thickness, Bu = cc.L; 
1, specific radiation intensity; 

J, dimensionless average radiation intensity, 
J EE M/4ax’; 

*Professor. 
iGraduate Student. 

‘9 reference length; 
lo, IO, 1,, direction-cosines; 

space integrated radiation intensity, M = S I do; 

:-lsu. normalized radiation heat flux, Q = q/oT,4; 
qtl?q@>qr> radiation heat flux in 0, CD and r-direction; 
R, position vector in the global spherical coordinate 

system; 
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one of the global spherical coordinates; 
:;, s2, sJ, coordinates defined by equation (4); 
T B’ temperature of the medium; 
T,9 reference temperature; 
a,, absorption coefficient; 
6, one of the local spherical coordinates; 
e 1, /3i = sin-i(Q); 
0, one of the global spherical coordinates; 
0, Stefan-Boltzmann constant; 

Z: 
one of the global spherical coordinates; 
one of the local spherical coordinates. 

Superscripts 

*> quantities at the wall; 
1, quantities associated with inner sphere; 
0, quantities associated with outer sphere. 

Subscripts 

1, quantities associated with inner sphere; 
0, quantities associated with outer sphere; 
9, radiative quantities resulting from medium 

emission; 
W, radiative quantities resulting from wall emission. 

INTRODUCTION 

IN SPITE of the fact that the analytical expression of radiative 
heat flux in terms of temperature distribution for spherically 
symmetric configurations has been known for quite some 
time [l-3], the generalization of this expression for a three- 
dimensional temperature field has never been achieved. 
Recently, however, Bohachevsky and Kostoff [4] have 
succeeded in devising elaborate numerical procedures, based 
on geometric considerations, for the exact computation of 
multi-dimensional radiative transfer in spherical media with 
an axisymmetric temperature field. In this paper, closed 
form exact solutions are obtained for multi-dimensional 
radiative transfer in a non-isothermal medium between con- 
centric spheres as well as inside and outside of a sphere. 
The approach adopted in this paper is an extension of 
previous work by Cheng et al. [S, 61, on the exact solutions 
of the radiative transport equation in rectangular and 
cylindrical coordinate systems. 

RADIATIVE TRANSFER IN A THREE-DIMENSIONAL 

TEMPERATURE FIELD 

For a three-dimensional temperature field in a spherical 
configuration where the temperature is given by T,(r, 0, +), 
the radiation-transport equation for a grey gas in thermo- 
dynamical equilibrium is [7] 

sin0 a sin@sin$ d _~__ 
r 30 

--+a, I 
rtan@ %$ 1 

= +(r,@,O), (1) 

where r, O,@ are the global spherical coordinates and 
8, I#J are the local spherical coordinates (see Fig. 1); a, and D 
are the absorption coefficient and the Stefan-Boltzmann 
constant, respectively. I is the specific radiation intensity 
which is a function of position vector R (where K = re,) and 
directional vector &, given by 

2,=sintJcos~Ze+sin6sin~Z~+cos6~,, (2) 

7 

i 

-Y 

FIG. 1. Spherical coordinate system. 

where t?,, Fe and 81~ are unit vectors of the global spherical 
coordinates. 

If an isothermal black wall at a temperature T, exists 
in the radiation field, the radiative boundary condition is 
given by 

I(r*, O*, CD*, 8*, 4*) = $, (3) 

where r*, O*, @* specify the position vector and 0*, I$* 
specify thedirection vector, with thesuperscript “*“denoting 
quantities on the wall. 

To obtain the formal solution of equation (1) with 
boundary condition (3) in spherical configurations we recast 
these equations in terms of the new independent variables 
sj(j = 1,2,3) with 

si = R.z,, sz = B.e,, sg = K.7@. (4) 

where 

e,= -sin4c’o+cos4&, (5) 

ee = cosBcos~~g+cosOsin~~~-sinOf?,, 

which are the unit vectors of the local spherical coordinates. 
It follows from equations (4) and (5) that 

s, = rcose, sz = 0, and ss = -rsinlJ. (6) 

If an isothermal black wall at a temperature T, exists 
in the radiation field, the radiative boundary condition is 
given by 

Gi, s3,& 4) 

=$exp[-a&i-sT)]+z 
s 

s, -s: 

n 0 
a.Tg4(4(S;, ss, &9) 

x exp[a.(S; -Si)] dS;, (7) 

where S; = s; -ST, and (si -ST) is the physical distance along 
sr from the field point (r, 0, @) to that of the wall. In the 
subsequent discussion, it is convenient to refer to the first 
term in equation (7) as I, and the second term as I,, 
representing the contribution from wall emission as well as 
medium emission respectively. 
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FIG. 2. Comparison of radiation fields inside an isothermal sphere (along r), an isothermal cylinder 
(along r at z = 0), and an isothermal cube (along x on y = z = 0). 

It is worth mentioning, in passing, that from geometric 
consideration, we have s3 = s$ which, with the aid of 
equation (6). gives 

sin P = !L sin 8. 
I.* (8) 

Equation (8) will be useful to express the quantity s1 -ST 
in equation (7) in terms of the spherical coordinates for 
various situations in subsequent discussion. 

Emitting-ubsorbing medium between concentric spheres 
Consider an emitting-absorbing medium with a pre- 

scribed temperature T,(r, 0, @) between concentric spheres 
with radii r, and ro. If the temperatures of the black walls are 
L& and To respectively, the boundary conditions are given by 

UT,4 
I(r,, @*,@*, O*, 4*) = --, for dn. E: < 0. (9’4 n 

It follows from equation (2) that the condition 2,. $’ 2 0 
implies that cos U* > 0 and that the condition Zn. Z: < 0 
imolies that cos b’* c 0. 

1 

Imposing boundary condition (9a), we have r* = ri and 
cos 8* 3 0. It follows that 

s1 -ST = r cos 0 - J(rf - rz sin* fJ), (104 

where we have made use of equations (6) and (8). Similarly, 
imposing boundary condition (9b), we have 

s1 -s: = rcosU + J(r,Z -r2 sin* 0). (lob) 

where we have made use of equations (6), (8) and the con- 
dition cos O* < 0. 

It follows from equation (7) and equations (10) that 

1:) = $exp[-l,(rcosO-,l(rf-Psin’H)], (lla) 

and 

x exp[a.(S; -S,)]ds’;. (lld) 
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FIG. 3. Comparison of radiation fields between two concentric spheres (along r) and two concentric 

cylinders (along r at z = 0). 

Consequently. the radiative auantities resulting from 
medium emissibn are given by L 

1’~ J 
(ri < f- < r,) (12) 

where le = sin 0 cos 4, 10 = sin e sin 4, 1, = cos 0, and 
81 = sin-‘(rJr). The radiative quantities resulting from wall 
emission are also given by equation (12) with the subscript 
g replaced by W. 

Emitting-absorbing medium inside and outside of a sphere 
The exact solutions for multi-dimensional radiative trans- 

fer in an emitting-absorbing medium with three-dimensional 
temperature distribution TB(r, 0, @) inside and outside of a 
sphere can be obtained from equation (12) with suitable 
modifications. For example, for the case of an emitting- 
absorbing medium outside of a sphere with radius ri, the 
radiative quantities are given by equations (12), (11~) and 
(1 Id) with r, -+ cc and To = 0. For the case of an emitting- 
absorbing medium inside a sphere with radius r,, the 
radiative quantities are given by dropping the first term in 
equation (12). This can be obtained formally by letting 
ri + 0 to give 8, = 0 and consequently the first integral in 
equation (12) vanishes. 

NUMERICAL RESULTS AND DISCUSSION 

Computations were carried out for radiative transfer in 
an isothermal emitting-medium inside a sphere and between 
concentric spheres with isothermal walls. Numerical results 
in terms of dimensionless quantities J, Q, ‘I: i, and Bu 
(where J = M/4aT;‘, Q = q/@, T = TIT,, i = r/L, Bu = 
a.L with T,andL being the reference temperature and length 
respectively) are presented in Figs. 2 and 3. For the con- 
venience of subsequent discussion, the superscript “_” will 
be omitted. 

Figure 2(a) shows the variation of J, and JB along r inside 
an isothermal sphere with T, = TB = ra = 1. It should be 
noted that J, = 1- JB when T, = TB = 1, and therefore 
J, and JB can be plotted in the same figure. Figure 2 also 
shows the comparison of the corresponding quantities along 
r on z = 0 inside a finite cylinder with r = c = TB = T, = 1, 
as well as along (x, 0.0) inside a cube* with a = b = c = 
1 = 7” = T, = 1. It is shown that for a specific value of Bu 
and at the same location, the value of J, is largest for a 
sphere and smallest for a cube. This is because for the same 
point in the radiation field, the distance from the point under 
consideration to the wall is smallest for a sphere and largest 
for a cube. Consequently, wall emission has a greater effect 
for the case of a sphere than that of a cube. The effect of 
geometries on QW, and Qe, is relatively small, as is shown 
in Fig. 2(b). The relative magnitudes of radiative heat flux 
inside a sphere, a cylinder, and a cube depends on the 

*The horizontal scales in Figs. 2-5 of [S] were er- 
roneously plotted. Instead of from 0 to 1, the horizontal 
scale should be from 0 to 0.5. In other words, the 
numerical results presented in [S] are for rectangles and 
cubes with unit length for each side. 
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values of Bu as well as the particular location under 
consideration. 

The radiation field along r in an isothermal medium 
between isothermal concentric spheres (ri = 05, r0 = 1.0, 
Tg = To = 7; = 1) is shown in Figs. 3(a) and 3(b). In these 
figures, comparison is also made with the radiation field 
inside two finite isothermal concentric cylinders (ri = 05, 
r,, = c = 1, TB = To = T = 1) along r on the mid-plane .z = 0, 
which were obtained previously [6]. As would be expected, 
the radiation fields under comparison exhibit similar be- 
havior. The magnitudes of J, and QW,, however, are higher 
for a concentric sphere than that of a finite concentric 
cylinder. 
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